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IN A UNIFORM STREAM “ -

By C. C. Lin and S. F. Shen
SUMMARY

The method of power-series expansion in Bdlving the local flow
pattern behind a detached shock was proposed by Lin and Rubinov. 1In
this report the limitations of the method are discussed in a more careful
manner, and the practical procedure for approximating the power series
with a 2nth-degree polynomial by cutting off the remaining terms is
Investigated. )

It is pointed out that if the power-series expansion is to hold near
the nose, the body shape must be analytic up to and including the sonic
point. TFor a 2nth-degree polynomiel approximation, n parameters deter-
mining the shock shape, as well as the detached shock distance itself,
are found to be expressible in terms of only n - 1 parameters deter-
mining the body shape. The formulas and steps for a sixth-degree poly-
nomial approximation are explicitly given in an appendix.

The particular example of free-stream Mach number 1.7 in the axially
symmetrical case has been worked out -with a fourth-degree polynomial
approximation. When the detached distance is used as the length scale,
the flow along the axis 1s. found to be independent of the body shape in
this approximation. A comparison is made with data obtained from an
interferometric study of the flow over a sphere. The density variation
along the axis agrees very well. The detached distance as solved from
the fourth-degree approximation, however, is correct only in the order
of magnitude.

The universal density+variation along the axis, as obtained by the
fourth-degree approximation, is considered likely to be a good approxi-
mation for all bodies having a slowly varying curvature up to the sonic
point at free-stream Mach numbers larger than or not much less than, say,

the value 1.7 considered above.
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TNTRODUCTION

It is well-known that a detached curved shock is formed in front
of a body when a supersonic stream flows past it, provided the body has
a blunt nose or a sharp nose with a quite large nose angle. A general
treatment of such flow problems isg difficult. It is therefore thought
useful to try to obtain some results of limited applicebility by straight-
forward methods of analysis. One such method is the use of power series
proposed by one of the authors in reference 1 and partially carried out
by Dugundji in reference 2. The present-report 1s concerned with a
closer investigation of the validity of this method and includes a more
comple Se formulation, as well as the computation procedure, of the series
expansion. General formulas were derived and some numerical calculations
Were carried out.

The case with free-stream Mach mumber 1.7 has been computed in the
axisymmetrical case using a fourth-degree polynomisl to represent the
flow. As stated in reference 1, the flow thus determined depends only
on the Mach number when the detached distance is adopted as the length
scale. The density variation along the axis shows remarkable egreement
with the experimental one for a sphere (reference 3), in spite of some
indications of slow convergence of the serles at the body nose. The
effect of this poor convergence is manifest when an estimation of the
detached distance itself is attempted. The discrepancy is large, although
the order of magnitude is correct. This fact leads to the suspiclon that
perhaps the variation of density distribution does not -depend very much
on the exact shock shape and is therefore less sensitive to the lnaccu-
racy of the method, yet the detached distance itself is very delicate.

It 18 clear that more terms of the series are needed for a better agree-
ment of the detached distance. General formulas and the procedure of
calculation are given in this report for such purposes.

Becauge of the rather involved expressions for the series expansion
and also the slow convergence occurring in the computed example, it is
thought that the procedure hesre would be useful generally in the cases
involving a body of approximately constant curvature in ‘the neighbor-
hood of the nose placed in a stream of Mach number not close to unity.
One might notice that Busemann in reference 4 has stressed instead the
importance of the "shoulder point," which presumebly lies near the sonic
point, in the determination of the detached shock in front of a body.
His discussions, however, seem to deal mostly with thin bodies at rather
low Mach numbers. A thin body with a blunt nose would have invariably
a rather rapidly changing curvature near the nose. This configuration
is then not directly amensble to the treatment by power series. (cf.
discussions in the section "Discussion of Method.")




NACA TN 2506 ~ ‘ 3

This work was conducted at the Massachusetts Institute of Technology
under the sponsorship and with the financial assistance of the National
Advisory Committee for Aeronsutics.

SYMBOLS

¥ stream function

o angle between incoming stream and shock wave

4 ratlo of specific heats of gés

o] ‘ density of gas; also density ratio across shock wave

o pressure ratio across shock wave

3] . "distance between shock wave and body along axis of
symmetry

F(¥) dependence of entropy on streamline

My Mach number of incoming stream

As increment of entropy across shock .

B1, Boy, . . . shock shape parameters, defined by equations (8) and
(13a) for axisymmetrical and two-dimensional cases,
respectively

€1y €py -+ - - body shape parameters, defined by equation (21)

po, Pys Py v o - functions\in expansion for p, defined by equations (15)

Wl, WE’ functions in expansion for V, defined by equations (15)

Xg? Xpr ¢ ¢ - functions in another expansion for V¥, defined by -

equations (24)
Py 3 xij coefficients of Taylo% series expansion of p and X,

respectively, defined by equation (26)

Bij’ Eij) . « . quantities evaluated at stagnation polnt
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STATEMENT OF PROBLEM AND METHOD OF SOLUTION

Consider a symmetrical body with a blunt nose placed symmetrically
in a uniform supersonic stream. It is plausible from physical grounds
to assume that, for an analytic body shape, the detached shock would
likewise be analytic.l The investipgation willt first be limited to such
cases. This restriction evidently excludes some important problems, such
as the detached shock formed in froat of a cone or wedge, which must be
treated separately.

To solve the problem, one may proceed in two steps. First, th:
shock curve may be regarded as given and the flow field regarded es
determined by the initial conditions on the shock. If the shape of the
shock is "reasonasble," a stagnation point may be expected on the axis
of symmetry, and a streamline may be found in the form of a body. The '
analysis may then be carried out by calculating the flow behind an
analytic shock in the form of a power series. Strictly speaking, the
analysis does not depend at all on the presence of the’ body and consists
only of finding the relation between the shock shape and the flow behind
it. .

The second step is the investigation of the dependence of shock
shape on body shape. Since the flow is determined by the shock curve
and must also have the body as a streamline, the relation can be obtained
by identifying the power-series solution from the shock with another
power series developed around the nose of the body, the identification
being made in a region common to the regions of convergence of both
series. In fact, detailed calculations show that, by using series up
to powers of the 2nth degree, this method enables one to solve for n
"shock parameters,” as well as the detached distance, in terms of n - 1
"body paremeters.” The parameters are in fact chosen to be the curva-
ture and its successive derivatives evaluated at the initial point (nose).
Although the method appears straightforward, careful investigations are
needed to insure its validity. These will be carried out in the section
"Discussion of Method."

The general analysis will be carried out in a manner applicable to
both the two-dimensional and the axially symmetrical cases. Emphasis
will then be put on the latter case in working out the explicit formulas
and procedure.

1Tn the actual case, there is a separation of the boundary layer
often occurring in the supersonic region. The downstream shock will
then cease to be unalytic. But it is clear that this will produce no
effect on the flow regime upstream of the separation point with which
tre present revort is concerned.
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The basic equations for flow behind & symmetrical shock produced
in a unifoym stream are, by introducing the conventional stream
function V,

-1 .
1 1/ 2 2 F(v)p? :
__.____<1fo +¢y>;|_1_(_1p_p___=c (l)
y2¢ 202 7 -1
O [1 o¥),9 L@):-M}re (2)
ax py€ Ox dy oy€ Jy 7y -1

where x 18 along the axis of symmetry, y is perpendicular to X,

p 1s the density of the gas, 7, the ratio of specific heats, and C,.
Bernouilli's constant (the. same in front of and behind the shock). The
parameter € is zero for the two-dimensional case but equals unity for
the axially symmetrical case, and F(V) gives the dependence of entropy
on the streamline. To reduce equation (1) to dimensionless form, the
free-stream values of velocity and density may be chosen toc be the

respective reference quantities. The length scale is arbiirary for the
moment. Then it follows that : .

—

F(V) _ (7M°°2)"1eAs .

, i , (3)
1
(7 - 1)M2

=1y
2

where M, 18 the free-stream Mach number and As is the change of

entropy across the shock (in multiples of the specific heat at constant

volume). In fact, if a is the angle which the shock makes with the
free stream,

As _ {27 2 gin2q - 1 l)(? -1, 2 ¢ N
© (7+1M°°Bn 7+ 1\7 + 1 (7 + 1)M 2 sin?a ()
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The pressure ratio @ across the shock is

27

W = M&g sina - U

¥y + 1

-1
Yy + 1

(5)

and the density ratio across the shock is the dimensionless density

(6)

y -1 2 -1
= * R
\7 +1 (7 + 1)M.,° sin“a
It is easlly seen that
A8 = wp=7

(7)

F(¥) = (M2) " ap7

Although formulas (%) to (6) hold only along the shock, the dependence
-1
of (7M12) @p~7 on V¥, as given by equation (7), is valid throughout

the whole field.
shock curve.

One can therefore evaluate F(V¥) from the shape of the

Shock conditions.- Suppose now the shock curve is given by

z = y°

Il

verified that

1+u4@w92

Then it can be easily

il

(sin a)~2

B\lx + B2X2 + B3X3 + .

(8)

1+ )-I-Bl_zz - 1682[31_)'"22 -

88,72(388,73 - 8828, 7¥)23 +
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' [l + lLz/(z')2:|nl

(sin o)2

il

1 -.ll-Bl'zz + 16(32 + l)Bl')'l'z2 +

| 8Bl-2|i35351—3 + 8(32 + 1)251'1']23 + ...

By straightforward calculations from equations (5), (6) , and (7) » One

then obtains

= = &“&1/{1 + ClBl-gz + CeBl-h(Bé + 1)z2 + C3 [3[31[33 -

8([32 + 1)2-J31-623 + . . }
-1 _

F = Fn<l + (7cl + Cl)ﬁl-Ez + {(702 + c2)52 +

E’Ie + ycyCq + .7(77'1)_ C12:|}Bl-h22 +

{ 3[3‘31[33 - 8(62 + l)E:I + 7C1C2(B2 + 1) +

”1(7 - 1.2, °2B2>'+ 7c3(3gl;33 3 8522) .

o pn-l[l + c1817% + opBy pga? + c3(38183 - 885%)z3 + . . .

>(9)

—— e ey —— [
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vwhere the subscript n denotes quantities immediately benind *ie nose
of the shock,

P 27 2 y -1 -1 y -1 2
= —— - - p T = -+
=3 o y+1 B Y+ 1 (y+1)M°
‘ . ‘ (10)
- 2y 2 vy -1\/7y -1 2 7
F=721(— ] .
n (M°°) 7+1M°’ Y+ L\ + 1 (y+1)M°2

and the coefficients c¢q, co, 3, Cy5 Cp, &nd C3 depend only on
the Mach number of the undisturbed stream:

¢y = -87[[2r - (7 - 1] ]

oy = ho,

C3 = -26;

ey =8f[r - w2 + 2] ’ (11)
cg = -2, .

Equation (9) holds only on the shock. Hence, 2z may be replaced by a
function of x through equation (8). For example, one obtains

]

All the above calculations apply to the conditions at the shock
both for the two-dimensional case and for the case of axial symmetry.
The trangformation of the third relation ia equation (9) .into one

p = pnI:l - Clﬁl—lx +' (Cl2 -+ 30162)81_2)(2 + . (12)
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involving V¥ differs in the two cakes. For the two-dimensional case,
on the shock, ‘

V=3
=\E
= (le +’52"2 + B3x3 + .. .)1/2 (13a)

and hence

F(¥) = Fn<l + (7eq + C1)B A2 + {(7c2 + Cp)Bp +

-1

7(y - l)clc232 + "7 - 12(7’- 2) cl%}ﬁl-6¢6 + .. .) (1ka)

throughout the whole field of flow behind the shock. - In the case of
axial symmetry, )

<

]
o] Fo
e

Il
o=
N

= 5(pax + Bx® + By + . . ) © (13p)
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on the shock, and hence :

F(V) = Fn<1 + 2(701 + 01)51“211{ + 1!-{(702 + 02)32 +

A -1

-1 -
7(y - Deyenppy + L2 ;(7 2) cl3}sl-6¢r6 . > (1kb)

throughout the whole field of flow behind the shock. Equations (12),
(13), and (14), with parameters defined by equations (10) and (11), are
the basic relations associated with the shock curwe (8).

Differential equations.- To solve differential equations (1) and (2)
in power series, it is found conventent to develop ¥ and p first in
powers of y with functions of x aB coefficlents. From symmetry
considerations, one has

E=3
|

=y E’l(x) + Vp(x)y2 + . . :l
(15)

k)
|

= po(x) + p(x)¥2 + pp()yh + .

Introducing these expressions into equations (1) and (2) and comparing
powers of Yy, one obtains two series of differential equations for the
two sets of functions Vp(x) and p,(x). The function F(V¥) is given

by equation (1L).
For the actual calculations, the two-dimensional case and the

axially symmetrical case are best to be treated separately. Only the
axisymmetrical case wlll be carried out in detail. Again introducing

the varisble z = y2, one transforms equations (1) and (2) into

1(¥,2 2> 4 Y4l _ 2
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d /1 d /1 _ e
g;(g; Wx) + 1+az<p Wz) =3 F (¥) (17)

Equation (15) may be written as

V=¥ (x)z + Wz(x)z2 + ¢3(x)z3 oo

) 18)
p = po(x)z + pe(x)z2 + p3(x)z3 e e
Introducing equation (14b) in the abbreviated form
P(Y) = ag + aq¥ + aéwz + a3$3 + ... (19

and substituting equations (18) and (19) into equations (16) and (17)
one derives the two sets of differential equations:

2 2y 41 2
(%0) W+ S eg" Tag = 2Cpg

t 2 pl _
(Al) (\lfl )2 + 161|fl‘lf2 + 71 p07+l[8‘0(7 + l)g + al‘if:l] = ll.CpOpl

7_

vy 2 2y +1 | Po

2
ACARIEON (A Y I 12 4 v, +
75 "1 1¥2
. O po

2
ag¥y = 20(012 + Epope)
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P
(43) (¥o')B+20 3t l’<m2“’3 + 8‘1‘1‘1'&) ¥ 72.71 907+l{&0[(7 + 1)£ +

+

3 2
rre12f2 , 2(2-1) P17 v |(ri2 , 22+1) P2
2 6 EYRAS! 5 > 5

Po Po 0 oo

p
(ea¥2 +2¥,2) (7 + 1)5% * a3 +eagh, + a3“’13}‘ = ¥(pgP3+ pypp)

1]’ ! w 2’# o} a
a1 e el
(%) E(—F’B—) ¥ %(E i 53) =7 -1
(81) 4 ﬁ'_(ﬁ . f.l_) + 8 Il'l<3‘l'3 e N 92) _
* [P0’ o Po\¥y ~ pp W T 02 Ty

Po” p _ 1) P2
_-;-—_—TEae‘lfe + 3331]f12 + 27&2’4»'1 -+ al(y E—- + 3 >
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Equations (AO) and (BO) are obtained by equating coefficients of zo

in equations (16) and (17), respectively. The other equations arise
from coefficients of corresponding powers.

One notes that from equation(Ao), Wl can be expressed in terms
of pg. Then from equations (Al) and (BO), Vo and py can be expressed

in terms of pgy, pgp', and py"; from equations (AE) and (Bl), W3 and

P2 can be expressed in terms of py, py', Py"s Po™'s - poiv, and so on.

Determination of solution from the shock curve.- It will now be
explicitly shown how the solution can be calculated as a power series
vhen an analytic shock curve 1s given. For definiteness, the discussion
will be 1limited to expansion up to the following degrees:

po(x), Wl(x) up to the fourth degree

pl(x), Wz(x) up to the second degree

p2(x), ¢3(x) up to the constant terms only

Referring to equation (18), one sees that the physical variables p,
u, and v are expaended to a fourth-degree polynomial in x and Y.

In general, there 1s a decrease of two dégrees when one proceeds

from (pn, *£+1) to (pn+l’ ¢ﬁ+ ).- This is directly related to the above

discussion about expressing them in terms of po(x) and its derivatives.

Again, in doing so, the expansion of p, u, and Vv as power series of
¥ and Yy includes all the terms up to a certain degree.

Returning to the case of the~fourth degree, one has to determine
five coefficients for each of po(x), wl(x), three coefficients for

each of pq(x), We(x), and the two quantities p2(0) and ¢3(0).

However, since the quantities Wl, Pys $2, Pos and W3 are expressible
in terms of po(x) and its derivatives (up to the proper orders), there
are only five coefficients to determine. This is done by imposing
conditions (12) and (13b) for p and V' on the shock. These power
geries are compared with another form of the same development obtained

by introducing equation (8) into equation (18); namely,
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p = pp(0) + [po'(b) + Blpl(O)]x + [% po"(0) + p17(0)By + p1(0)B, N

pe(O)Ble]xz R
r(20)

w-%z=ﬁgmml+%wmfk2+Efmm2+g%%m%+

J

¥p'(0)8,2 + 2¥,(0)p1pp + w3(o)sl§]x3 .

Exactly five conditions are obtalned involving only the gquantities
desired. The only geometrical parameters of the shock entering the
problem here are Bl and 82 which appear in the gbove equations and

also enter through 8gs 2y, and a, appearing in the differential

equations. Thus, the calculations of the solutions up to the fourth
degree involve only two geometrical parameters from the shock. This has
already been discussed by Lin and Rubinov (reference 1, p. 122), but
here the procedure is explicitly outlined.

As a genmeral rule, for a 2nth-degree expansion of the flow, the
quantities involved will be up to $n+l(0) and pn(O). There are con-

sequently n conditions from V¥ &and n + 1 conditions from p by
irposing equation (20). Thus the 2n + 1 coefficients in the expansion
can be uniquely determined. It is also noted that there are n shock

parameters By, By, . - ., B, entering the problem.

Relation between body shape and shock curve.- One sterts next to
expand the solution about the stagnation point of the body. Except for
a shift of the origin, the previous equations (16) to (19), together
with the consequences in the form of the equations (A) and (B), evidently
hold just as well in the present expansion. The observation that wn+l

and pp can be expressed in terms of -pg, po', po", .. ey pO(Qn)
remains also true. Suppose now the body shape is given by

z =y° = €1x + €2X2 + €3h3 + .. (21)
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Then the conditions that furnish the relations for the determination of
the coefficients become

Pol0) =

|
TN
~
¢ o
~
[
lj'i:i
Q
<=
~—
R
[

> (22)

|
o

¥, (0) =

and (cf. equations (20)),
0= [4’1'(0)61 + we(o)elz]z-@ + Erl'(o)e2 + %\]fl"(O)el +

11 (0062 + 2¥y(0)e 65 + ¥(0) 3|3 (23)

One might reason that in comparison with equations (20), the con-
ditions from density variatlons along the body are milssing, and there-
fore there are n + 1 fewer conditions. Even with the one for pO(O)

in equations (22), it seems that for 2n + 1 coefficients in the expan-
glon only n + 1 conditions are avallable, leaving a total of n arbi-
trary parameters. Although the result turns out to be true, the argument
is not so simple. An important point is that instead of. n body param-
eters according to the gbove argument, only n - 1 parameters defining
the body here enter the problem. This may be verified as follows.
Rewriting

¥ o= }'l+ex( x’yQ)

yl+€(Xo £ xy® oyt 4L ) (2k)

with X(0,0) = O because the origin is chosen at the stagnation point,
one may transform equation (16) into

! . c - B%[ye(xxz + xy2) +2(1 + e)yXyX + xe]
I I (25)
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'

Bach term in the bracket of the right-hand side is seen to have a double
zero at the origin. After successive differentiation, the highest deriv-
ative of X on the right-hand side asppears to be at least one order
lower than the highest order of p on.the left-hand side. In other
words, 1f one writes formally .

o =TT oyt (26)
i3

and similar expressions for the other varisbles, there follows

= afx X
P13 G( 1-2, 3417 "1, 3-1°

) (27)

where the omitted terms are lower-order derivatives of X and p. Since
p 1is even in y, the index 1 1is always even and terms like Xi-l 3
)

do not exist. Needless to say, the subscripts can never become negatlve. .
Vhen a representation. using a 2nth-degree polynomial is made, all the
pij's up to 1 + J =2n are required, involving the following deriv-

atives of X:

%1 %2+ -+ %o,on-1

%0 X1 - - X, on-3
' (28)

%on-k,0 Xon-k,1 - - - *on-k,3
Xonlo,0 *en-2,1

a total of n? + n - 1 quantities. Among them equation (17) furnishes
some relations. By means of transformation (24), it becomes

>g0{+xyy-%(pxxx+pyxy)+l;e[2xy-(1+e)%xxi|_

' X T (y)
% O A e T ° (29)




-
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‘ yi+i-2
dxJdyi-2

tion (29). All the terms except the first two can readily be seen to
consist of lower-order derivatives than Xsfs the'derivgtives of p

Then XiJ is obtainsble by applying the operator to'equa—

being representable by lower-order derivatives as expressed in equa~
tion (27). . Hence

Xij = H(Xi_2’3+2, lower-order derivatives)

As a result, all the Xij'é are-expressible in terms of the derivatives
with respect to x only. A total of 2n - 1 parameters (e.g., X012

Xopr + ¢+ s XO,Qn-l) is sgfficient for the determination of all the
needed Xij's in a 2nth-degree polynomial representation for p.

The general expression of condition (23) is now

‘ . - . N
n - n N
%o + %, S € X + Xh<; € X ) +...=0 (30)

n=1 An=1

The coefficient associated with x® will yield an equation involving
X2m,0 as the highest-order term of X and ¢, as the highest-order

term of body shape. Equation (28) indicates that for a 2nth-degree
expansion the highest-order term of the form ’Xem o needed is Xén 5 0
3 . <

Hence, equation (30) will furnish useful conditions by equating the

coefficients to zero for terms.up to 'xn‘l, that is, a total of n - 1
conditions. There are thus n arbitrary paerameters (as suspected) left
in the determination of the expansion. But since only terms up to

21  are used in equation (30), there are involved but n - 1 paramete.s
defining the body shape. : ‘

It remains now to show how the reletion between the shapes of the
shock curve and of the body may be found. As stated above, the expan-
sions from the shock and from the body are matched at a point lying within
the reglons of convergence of both. In.particular, to avoid the question
of singularity which might occur inside the body contour,-the stagnation
point itself is. arbitrarily chosen as the "matching point." Along- the
x-axis, the 2nth-degree expansion furnishes " 2n + 1 conditions on
equating the successive derivatives at the matching point. The variables
involved are: n parameters defining the shock cur%e_(ﬁl, @é, oy

Bn), n ,paraméters in the eipansion from the body (e,g.; -¢ll’
. Win), n - 1 parameters defining the shape of the body
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. .-., en—l) and the distance 8 Dbetween the body and the detached

shock wave along the x-axis. Hence a total of 2n + 1 unknowns may be
golved in terms of the n - 1 parameters defining the body shape. It
may be noted that the solution obviously would be modified when different
values of n are taken. However, if the series expansions do converge,
the result should tend to a limit for increasing n.

If one does not care for a complete expansion in the form of equa-

tion (26) but rather is interested in the distribution along, say, the
x-axis, the process is sometimes much simpler. By writing

_ X ofx\2 on (x\2n
Py = P10 * 9015(5) * Pood (E) * .-+ P, opd (E) (31)

the coefficients po mBm involve but a total of n parameters (Bl,

Bo, . .y Bn), with & as the length scale. One could pick out from
the set of 2n + 1 simultaneous equations a subset which is sufficient
for the solution of By, By, . - ., B,- In general the subset would

contain parameters occurring in the expansion from the body nose. In
the particular example of a fourth-degree polynomial, the two necessary
equations for By and B, are readily provided by equation (22) or its

equivalent and the expansion from the body is not needed. Evidently the
body shape can not affect the fourth-degree expansion so determined.

The simplicity of this result is certalnly too attractive to be ignored,
in spite of its possibly poor accuracy in extreme cases. The result
turns out that a good agreement in density distribution 1s obtained with
the experiment over a sphere at My, = 1.7. Indication will be made in
the section "Discussion of Method" as to the possible range over which

a similar agreement might be expected to hold. When one tries to obtain
the value of & by imposing other conditions in the matching process,
however, the result for the fourth-degree expansion shows a large dis-
crepancy in comparison with the same experiment quoted above. This fact
is not surprising since the power series is cut off after only four terms
and the error would be undoubtedly large when higher derivatives are
taken.

Explicit formulas and procedure.- In the actual carrying out of the
solution, equations (A) and (B) are to be expanded further into ascending
powers of x. Equations expressing the relation among the quantities
pij and Wij are obtained by equating the coefficients of each power

of x. These formulas and also the procedure to solve for the desired
coefficients in the case of a sixth-degree polynomial representation of
the flow along the x-axis of an axially symmetrical body are given in
the appendix.
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DISCUSSION OF METHOD

The method described above, though seemingly straightforward, cannot
be relied on without a more careful examination as to its limitations.
Two pointe must be comsidered. In the first place, the subsonic region
Just behind a detached shock is expected to depend on the entire body.
shape. This seems to make it difficult to treat the problem by power
series, which depend on local properties. The second is the question of
convergence of the series. '

The first point is really the following question: To what extent
is the flow field determined by the local properties of the body at the
nose? Theoretically, if the body shape 18 analytic, the local properties
of the body do determine the entire body shape and thereby determine the
entire flow field including the shock. In fact, &t some distance down-
stream there is a sonic line (CD in fig. 1), after which the flow becomes
supersonic. For two-dimensional flows, Guderley has suggested (refer-
ence 5) that, based on Tricomi's study of a certain differential equation
vhich is elliptic in part of the region and hyperbolic in the rest, there
should be also a unique solution for the subsonic region behind the shock.
He reasoned that the body shape should be given up to the point E, from
which the Mach wave reaches the sonic point on the shock front. Any
reasonable modification of the body downstream from this point will not
influence the flow in the region ABCED. The same conclusion, when
physically iuncerpreted, seems to be equally velid in three-dimensional
flows. Thus, if a sufficient number of terms are retained in the power
series for the body shape to represent it over the part BCE, slightly
beyond the sonic point, all the important parameters of the problem are
known. If the body has a falrly blunt nose, a few terms would be suffi-
cient. The method of series expansion may then be expected to work.

It is important to notice that the above statement applies only to
cases where the body contour is analytic over BCE. If the sonic point
were brought in by the presence of a sharp turn in the boundary, a
Prandtl-Meyer expansion exists, and the flow field in the region ABCD
would be determined in an entirely different manner.

In order to apply the above discussions to a given body, one must
be able to estimate the location of the sonic point. In certain cases,
this might be done, for instance, by the method suggested by Busemann
for the determination of the shoulder point (reference 4). One might
even suggest that the body shape should be more closely approximated in
that nelghborhood at the expanse of its nose. The important point is
that, since the entire contour BCE affects the shock, certain Judgment
is needed in picking out the most significant parameter. When there 1is
more or less constant curvature starting from the nose, and the detached
distance is known to be small in comparison with the radius of curvature
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at the nose, undoubtedly the nose curvature plays a predominant role.
Local properties of the shock, such as the curvature at its nose, would
be largely determined by the nose curvature of the body. On the other
hand, in cases like those discussed in reference 4, one has a thin body
with a blunt nose and a quite large detached distance. The body curvature
changes at a considerable rate in the neighborhood of the nose. This
rate, then, might have an effect of the same order as or even overshad-
owing that of the curvature itself. The flow near the shock, being far
away Trom the nose, would depend on the over-all body shape BCE. The
simple procedure of using only a few terms of the expansion depending
only on the body nose curvature is obviously insufficient for any
accuracy at all.

After having clarified the dependence of the flow on the body shape
near the nose, one must take up the question of the convergence of the
series. Because of the analytic nature of the flow in the subsonic
region, it might be assumed that the power-series expansion from the
point A on the shock is convergent up to the body, including the stag-
nation point B. The region of convergence of the series starting from
B, on the other hand, depends on the nearest singularity lying within
the body contour. In choosing the point common to the regions of con-
vergence Tor matching the two series, one must try to be close to the
point B. In the section "Statement of Problem and Method of Solution”
the point has iIn fact been taken to be point B itself. Indeed, if
the series from A and B are closely approximated by polynomisals
of the same degree, the matching of the two series gives completely
identical results, no matter where the conditions are applied. In fact,
the present procedure of applying the method may also be regarded as one
of polynomial approximation, satisfying a finite number of conditions at
the boundaries. Then instead of talking about convergence, one can say
that the inaccuracy is due to the fajlure to satisfy all the conditions
as required by the governing equations of motion. There are techniques
for improving the (over-all) accuracy of approximations of this nature.
It is likely that by utilizing some of those techniques (e.g. , least-
square error) the practical value of the present method could be greatly
enhanced.

After assuming the convergence of the series representation of the
flow variables, one still has to consider the error caused by the retain-
ment of only a finite number of terms. It is important to point out
that the solution for the parameters changes with the degree of the
polynomial chosen, although theoretically the values would converge as
n increases. The appropriate degree n for a satisfactory result,
therefore, can not be stated a priori. One could merely argue that, for
a body shape with slowly varying curvature up to and slightly beyond
the sonic point, the shock-wave curvature presumasbly would also vary
rather slovly up to its sonic point and, consequently, a polynomial of
a fairly low degree would be needed in such cases. The effect of the

I
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Mach number on the convergence of the series is more difficult to
visualize. The question strictly can only be settled through actual
calculation. -

To clarify this point further, the validity of the fourth-degree
polynomial as the universal function for density variation -between the
detached shock and the body nose will now be discussed. As pointed out
above, one must look into the neglected terms in the series expansion.
Consider, say, a sixth-degree representation. The coefficients thus

solved will now contain, besides the Mach number, the product K(O)B
where K( ) is the oody curvature and 5, the detached distance. When
(O)r\

6 ie small, the modification in the coefficients of the first five
terms, as compared with the fourth-degree representation, would also be

small. By dimensional reasoning K(O)S obviously depends only on the
Mach number. So a range of Mach numbers prevails over which the fourth-
degree representation is very close to the first five terms of the sixth-
degree one. A thorough investigation should include the variation of
the coefficient of the last two terms in the sixth-degree representation,
vhich would lead to another restriction on the Mach number to justify
their omission. A common range of Mach numbers would presumsbly become
available for the fourth-degree representation to hold. These_steps,
though desirable, were not taken in this report. Without going into

details, it seems physically likely that the smallness of K(O)B would
ensure the fourth-degree representation to be a reasonsble one. For,

the smallness of K(O)B means that, for a given body curvature K(O)
& must be small. A smaller & very likely tends to improve the practi-
cal convergence of the power series. It should be noted that, in char-

acterizing the body by a single parameter K(O), one implies that the body .
shape must not deviate appreciably from a parabolic one up to the sonic
point. ,

If the criterion of small K(O)S turns out to be correct, evidently
a larger Mach number is favorable for the epproximation. Semiempirically,

the smallness of K(O)6 may be tentatively measured against the value

in the experiment quoted above, to be discussed in the following section,
where the measured density distribution agrees well with the fourth-degree
representation.

NUMERICATL, RESULTS OF FOURTH-DEGREE POLYNOMIAL APPROXIMATTON

The case of free-stream Mach number 1.7 has been computed for an
axially symmetrical body by using a fourth-degree polynomial as the
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approximation to the power-series solution. The results indicate that
calculations involving higher-order terms are desirable for the deter-
mination of the distance of detachment. The steps outlined in the
appendix have been followed. Teaking 7 = 1.405, one may list the results
as follows:

= T. 296[31"1
¥y = -2.384g, 71

©
o
=
|

Py = -12.838,72
Voo = 2.3848,72
¥y, = -16.518,72 ' '
Poo = -28.6061'2

P11 = -29.18B,B; 73 - 1k2.hpy -3
¥y = W.T68B,8,73 + 53.638,73
¥30 = ~T.1528,81 7% - 37.128,7%
g = 58.618,8, % + 18k.9p; 74
¥13 = -10.8088;73 - 73.46B, 3
Po3 = 33-04BoB173 + 390.78,73
Vpp = 140. 488 7% + 596.28, ¥
P1p = -34k.18oB1 7 - 17728, 7*
¥y), = -119.78,8, "+ - 550.08;
Poy .= ~350.38,8, 7 - 68068, ¥

There actually was another set of these functions because Po1 is

solved from s quadratic equation. However, the other expression gives
a negative value of Po1» contrary to the conception of a compression

along the axis and is therefore abandoned.
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Conditions (22) may now be used to solve simultaneously for the
parameters 81/8 and PB,. The equations are:

_ 2 3 b

After substitution equations (32a) and (33a) become

0.479 = 7.296 2 - 28.60(2-\" + 390.7(2-) - 6806 SL)“ N
Py By B By

5\/8\3
(33-04 - 350.3 EI)<§I) B, (32b)

0.500 = 2.38k O~ + 16.51 51)2 + T3.46 31)3 + 550.0(2\* +
B1 By By By

(10.80 +119.7 é%)(é%)3ﬁ2 (33b)

By eliminating B,, a fifth-degree algebraic equation in S/Bl is

obtained. Again one has to choose the proper root which corresponds to
the physical problem. . In the present case, the choice is made easy by
comparing with the experiment over a sphere as presented in reference 3.
The proper root is found to be

8

L 0.06k4k

I~

(34)
‘32 = 50.’4—
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Consequently, the density variation along the axis may be written down
as .

bo = 2.192 + 0.4699 X - 0.1186(X ) + o.5h93(§)3 - o.helh(g)h (35)

Up to this degree of representation, fhe body shape does not enter.

Before making comparison with the experimental data in reference 3,
it may be noted that the solution for ©&/B; and Bp, such as equa-

tion (34), depends on the conditions chosen for their determination. To
illustrate this point, one may recall that, instead of the condition
¥, = 0 at the stagnation point, an equivalent condition is dpg/dx = O

at the stagnation point along the axis. In the simultaneous equatipn,
equation (33a) is to be replaced by

so that in parallel with equation (33b) one now has

_ 5 B \2 B1\3 _ B \k
0 = 7.296 By 57.21(Bl) + 1172<31> 27360(B1> +

5 \/8 \3
(99.;1 - k01 EI)<§I> By (36b)‘

The solution of equations (32b) and (36b) gives

0.0697

|
I

(37)
L7.5

W
no
I

as well as

.

pp = 2.192 + 0.5085 & - o.139o(§)2 + 0.5633(§)3 - 0.5538(-’6‘-)lL (38)
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The difference between the two sets of results is not surprising, because
only a finite number of terms have been used in the series. The.terms .
omitted have unequal effects on the approximations for pg, dpo/dx, and

V1. Equations (35) and (38) are.both plotted in figure 2 together with

the experimental points from reference 3. The curve for equation (35)
gives a slightly smaller density increase than equation (38) throughout
the range. The agreement with experiment is ‘good except for points very
near to the body. There the experimental value is much higher than the
theoretical one assuming isentropic compression. The discrepancy is too
large to be attributed, say, to the neglect of the viscosity effect in
the theory. On the other hand, one may suspect that the accuracy of the
experiment could be poorer in the neighborhood of the stagnation point,
where a very small region of high density occurs (see fig. 29, refer-
ence 3). A slight misalinement of the apparatus with the instantaneous
actual flow directlon, for instance, may cause a quite noticeable change
in the value evaluated from the photograph.

The condition dpp/dx is, in fact, the one which results from the
general scheme of matching the expansion from the shock with the expan-
sion from the nose. Such a scheme will now be worked out for the present
example for the purpose of finding the detached shock distance 5.  Let
p and V¥ denote the variables in the expansion from the body nose. - -
Again, by following the steps outlined in the appendix, one obtains
readily:

1 t
Poo = (1= 1 2)7-1
7 ao ‘

Pop =0 :

_ 1 - 5

Popn = =-=— V¥

10775 n . )

- ~ a1

Voo = -¥11€61

— T ' ay 7+l )

Y12 = W16 - 5oy Poo
Bop = -2 T2

02 = "5 "11 | :

— 8 - = - ay — 1

= - I 1 7

03 = ~5; Wll]:‘yllel' " By~ 1) Poo ‘

Boy = - Fyi¥ya - =4 P RN, | R
ok = 7§y "11¥13 111~ T 3y - 1) Poo " 5, Po2
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The matching then involves a set of five simultaneous equations for the
five unknowns By, Bo, 8, V¥j;, and ¢l3 in terms of the body shape

parameter €

2 N -
P + Pp18 *+ PpRdT + ‘303‘33 + Pou®" = Pgg

2 3 Yy _ -
p018 + 2p025 + 3p038 + hpoha = p015

200082 + 6p303 + 12p3% = 25,82 & (39)°

) ) 6p0§83 + 2hpoh6lk = 650363

pol8" = Boys”

Obviously the first two are equations (32a) and (36a) solved before for
the parameters B5/By; and B,. Note also that *13 appears only in

50h5 therefore the first four of equations (39) are sufficient to deter-
mine By, By, B, and Eil‘ One mey easily verify that

Bnsd3 a.52 Ban? L _ .
s _ Po3 1 00" " 5 (40)

€1 85pd°  2(7 - 1)Dp Bped?

The negetive root is taken for @ilb

Dy )1/2

with ¥8 = '(’T Bopd”

because Eil ~ g% gt the stagnation polnt, which is negative in the

physical problem. With solution (37), the ﬁetached shock distance turns
out to be

-% = 0.138 (k1)

In comparison with the data in reference 3, the value of €] being
equal to the diameter of the sphere, the approximate formula (41) gives

5=1.1 mm




NACA TN 2506 27

vhile the experimental value is 1.94 millimeters. The discrepancy is
certainly large, yet the order of magnitude is correct. Since only a
polynomial of the fourth degree is used, giving a density distribution
independent of body shape, this 1s perhaps the reasonsble extent of
agreement that can be expected. More careful calculations must involve
terms of higher orders. ' - .

One may also be interested to see how the shape of the shock curve
is being approximated by the above solution. With equations (37), the
shock shape from the present epproximstion is

(f - emms@e. .. oo

The curve (42) has been compared with the experimental one given in .
reference 3. The agreement is reasonable for small values of y/S but
the deviation becomes appreciable for values of y/8 of the order of
unit%, as may be expected from the slow convergence of the series (35)
and (38).

Massachusetts Institute of Technology
Cambridge, Mass " June 30 1949
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APPENDIX

EXPLICIT FORMULAS AND PROCEDﬁRE FOR SIXTH-DEGREE

POLYNOMTAT. APPROXTMATION OF FLOW ALONG

AXTS OF AXTATLLY SYMMETRICAL BODY

NACA TN 2506

It is desired now to find an approximate solution in the form

= 2 3 Iy 5 6
Poo T Por* * PooX™ + Po3X” F PuX” + PogX” T PpgX

for the flow along the axis of an axially symmetrical body. As stated
in the section "Statement of Problem and Method of Solutiom,"

equations (A) and (B) are to be expanded into ascending powers of x.
The resulting equation from equating the coefficients of a certain power
of x of equation (Ao), say, is to be denoted by a second subscript.

For instance, (AOO) stands for the equation obtained by equating the

coefficient of x° 1in equation (Ap)- . In a similar manner, equation (Ba2)

stands for the equation obtained by eguating the coefficient of x2 in
equation (BQ) , and so forth. By so doing one gets the following:

(Aoo)

(boa)

An identity between vy, = 1/2 and P00 = Pn

D1Po1 = -8¥10¥11

_ 2 2
Dypgp = -4(2¥ k10 + ¥12®) - Dopgy

D1Po3 ="8(*iowi3 + *il*ie) - 2DoPp1P02 -

7+1p 7-2. 3

2y
7 -1 2°3" "Poo” "Por
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(Aon) . D1Poy = 'h(e‘ylo‘ylu +ahyg t 1"’12;2) 3 (2"01‘50’3 + poee)De -

v

27 oyl 7-2 2 _ 27 7+l -3 h
(’7 =1 %°3" Poo )(3"01 poe) 7 -1 %% Poo’ ~Po1
(a05)  Daros = -8 (*10‘*’15 + ¥pdy ‘¥12W13), -

(2001pou * ep02‘3“03>De -

27 ¥, 7-2(, 2, 2
7-1% [303 Poo (‘301 Po3 * Po1P02 )*

7+l r-3, 3 ¢l 7=k 5
40y Pop” "R Pag * Cs' Pog p01]
(Aos)  D1Pog = '1‘(2‘1’10“'16'f 2V11%15 + 2V1oViy +,’4’132) -

. o
(2"01905 T 2PouPop * Po3 )De

2y a.l}yﬂ -7—2(

2 3
7 =T %|¢3" P00 (301 Pon * ©P01P0oP03 * Pon )*

r+1, " 7-3 3, | 2 2
" oo (1‘901 Po3 * 6Pp1 Pz ) *

7+l y=bf{= 4 +1 -5. 6
C5" P00 (5"01 p0.2) + Cg? g0 pOl]

2 2y . +1
(Alo) wll + 16\1'10"1!20 + Dlplo = - Yy -1 5-10007 \lflo
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27 7+1 Y 7+1
WYy - Beeigfoy - T ?1(C1 Poo Por¥10 * Poo *11)
_ o
DyPyp = -6V p¥yg - WS = 16(¥y ¥y + ¥pq¥y Vip¥a0) -

o2 70067 2002010 -
25(P10P02 * P11P01) 7 T ao<3c3 Poo” "Po1"P10

2y 7+1 y+1 V4
) al[%l2p00 *C" TPoo Por¥iy *

7L ., yHL o y-1 2
(Cl Poo Poz * %2 Poo’ Po1 V10

(A13) DaPaz = -B¥ya¥yy - 12995015 - 16(Vg¥ps + Virdpp +

Vig¥oy + ¢13W20) "72D2(°10903 * PopPy1 t p01‘312) -

2y y+l -2 )
—] ao[§3 Poo (6901902910 *+ 3P11P01 ) +

+1, 7-3(hs 3 2y . +1
¢y o0 (”p01')] Ty o1 al[éOO? Vi3 +

¥l 7y ( Y+l 7 7+l -1 2)
C1" oo Portaz * (017 P Po2 t Co' Pog” Por a1 *

y¢l  y y#1 -1 7+l -2 3)
(Cl Poo Po3 * 20" Poy  Po1Poz * C3" Poo’ Pop wlé}
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(a2

(A20)
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¥, .V
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-10¥) ¥y g - 16¥, ¥y - 93 6(*10*2& * wi;w23 +

ngw + ¥V o+ wlhwgo) -

13¥21 D, (P01P13 ¥ PoaPip *
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- _ _ 2 . -
(Beo) 2000¥35 = 2P10¥00 * ¥op(P1y 2001810) 2‘L'12<"’oog10 pzcb

2

1l’ll(eglopll " 3810 P01 " Po1 * 2°01g20) * V3P0 -
12[%*40000 - 3¥30P10 = 2¥a0(P10%10 - Poo) -
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e [ 2 7, 7+l ) %3 42y 2
- 1(poo Yoo * C17P00" P10%10) T 7 =1 Poo’ V10

In the above expressions, a number of symbols are used for abbreviation.
They are defined as follows: The gmn's are coefficients of the

quantity pp/Po:

Pm
B_=Zg 2
0 n=0
Hence
_ Pmo
gm0 = 3

g = Pml _ PmoPol
'ml p 2
00  Pyy

8mo = )

2

Pmo _ PmiPor . Po Po1” °oe>
)

Poo Poo poo\poo Poo

©
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The C,"'s are the binomial coefficients such that

o0

(L +x)"= zi: Cpx? -

n=0

that is,

m(m - 1). . .(m - n + 1)

n!

m _
Cn =

Finally the Dp's eand hp,'s are simply sbbreviations:

_ 7+l 7
Dy =5—7 %" "Poo’ - Mego
_ 741, 7-1 _
Dp = ——— G o, oc
by = 20 ¥y + Bepg¥y

hyy = by, ¥y, + (hpoe +8p ¥y + 8oy ¥,

iy = bpgr Y3 * (8"024+ 8o, Vo + (6903 +8ppq )4y + 80,,%,

For an expansion starting from the shock, the conditions at the

shock are given by identifying equations (12) and (13b) with equation (20).

The equation obtained from equating the coefficlents of a certain power
of x 1n the condition for p, say, is now to be denoted by a super-

script to p. Thus p(2) stands for the equatlon resulting from the

2

2
coefficients of x 1n the condition for p; similarly, stands
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for the same in the condition for VY. Then the following are found to
hola:

(p(l)) Por * P1oPy = ’°1"oo‘31-l

(2) 82 . e -2
<p ) Poz * P1P11 + P1"Pop = PaPyg * Pog ["15251 ¥

(2% - °2’32)'31'2]

2 3 _
(9(3)) B1™Ppy + By7P3g = <Po3 = ByPio = BoPyy - Bgpyg - 2ByBopyy

-2 2 3
pc>o["’1’33‘31 +232(°1 - °232)Bl -

(cl3 - 2c c262 3c3B B3 + 8¢ B "3:,
(‘4’(2)) ¥q1 + VpBp = O
o]
(*(3)) Vo1By + V30817 = -¥pp - Yoop

( w(u)) V31892 + VB3 = Vg3 - VpoBz - VpiBp - VopBy - 2¥30B1B5

One may proceed in the order indicated below to arrive at all the
coefficients Poo’ Por’ * * *r Poge The right-hsnd side of each

expression is the unknown which may be determined from the left-hand
slde in terms of quantities already obtained.
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(AOO) —> identity between Vy, and Poo

(l))L —é\lfll: pOl’ ~’~lf20) plO simultaneously

@) T %1 P Y300 Poo
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As a result, for a fourth-degree expansion, one oniy has to go as
far as equation (th), solving a total of 16 relations. For a sixth-

degree one, there are altogether 30 relations. The increase of amount
of work gives an Indication as to what must be expected for a finer
approximation.

Next, for an expansion starting from the stagnation point, the same
set of equations (AOO) to (BQO) 8till holds. The quantities will be
denot&d by 560’ Eii, 5i, and so forth. The conditions resulting from
equation (23) take the same form as (W(e)), (¢(3)), . . ., except that
the PB's are to be replaced by the ¢'s. But the conditions resulting
from the density variation along the body are missing. The previous
order for the successive solution of the unknowns may still be followed,
while one arbltrary parameter must now be introduced in each set of the

similtancous equations like the set (A ), (A,), and (¥2) . s, for
137 and Wl5

eters and break up the simultaneous equations into separate ones. Mean-
while the fact Wlo = 0 greatly simplifies the computation. The neces-

sary steps, in fact, are reduced to:

a sixth-degree expansion one may take Wll’ ¥ a8 the param-

(400) = Boo ‘
(AOl) —> Py1

(A10) — P10

(+®) — %20

(Boo) —>¥, |

(Aoe) —> Py

(%03)—> P03

(Bon) —> Pon

(Bo1) = ¥
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(A1) —
(w( 3
(A20
(B10

)
)
(Bo2)
)
)

S’

(%os
(Ros
Hence a total of only 8 steps are sufficlent for a fourth-degree

expansion, and. 16 steps, for a sixth-degree one. Further, there is no
longer the need to solve scome of the equations simultaneously.

¥
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Body

Figure 1l.- Regions of flow behind a detached shock.
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